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1, Introduction

In this course of lectures we shall deal with the theory of two-
dimensional systems, both continuous and discrete. In Chapter I we
present general methods of derivation of the displacement differential
equations describing the considered systems and a method of their sol-
ution. We consider also, some particular cases, namely strings and

beams.

The differential equation of deflection of a string or a membrane
and on the other hand of a beam or a plate, have been derived on a common
basis, namely the principle of virtual work implying the Hamilton prin-
ciple.

Moreover, we present a unified procedure for solving the differen-
tial equations describing transverse vibrations of strings, membranes
and beams and plates. This procedure concerns dynamic problems and

the solutions of static problems constitute a particular caca.
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The above general method consists in making use of the Green
function in solving the differential equations for deflections. We
shall prove that a determination of the deflection of a structural
element may be reduced to an integral expression containing the external
loading and initial conditions, multiplied in an appropriate manner by

the Green function.

Another important problem consists in the determination of the
Green function. In order to unify this procedure we consistently apply
integral and finite transforms.

In dynamic problems we first use the integral Laplace transform
with respect to the time £, in order to eliminate the time from the
differential equation for deflection. Next, we make use of the Fourier
transform or a finite transform, depending on the prescribed boundary
conditions. Thus, for a plate strip simply supported on its boundaries,
we first apply the exponential Fourier transform and then a finite sine
transform. The inversion of the integral transforms leads to the Green
function. We arrive at the final results by substituting the Green
function into the integral expression examined in Sec. 4. The general
procedure presented in this Chapter can be extended to more complicated
systems, e.g. shells and to discrete gridworks. Finally we demonstrate
an application of an analogous method to the problem of free and forced
vibrations of systems the material of which is viscoelastic.

2. The principle of virtual work and Hamilton's principle

Consider an elastic body subject to the action of external forces;
the latter include body forces and surface tractions. We assume that
the external loadings depend on position x and time £. These sources
produce in the body a displacement field u(x,t) and the associated with

this field state of strain e.. and stress o...
1J 1J
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In linear elasticity we define the strain tensor as follows:

eij = }(ui’j + uj,i)’ Tad = 15253 (2.1)

The components of the state of stress are linear functions of strain.

The generalized Hooke law has the form

G£j = 2|.|s£j + lﬁia.akk.

(2.2)
The quantities p,A are material constants called the Lamé constants.

The above equations are completed by the equations of motion which are
derived from the fundamental principles of mechanics, namely the prin-

ciple of conservation of linear and angular momenta. They have the form

Oj‘!:"f'l'xi:ﬂui. Uj'!::u'l:j. :_'EeV, t > 0. (2.3)

where X is the vector of ghe body forces, referred to a unit volume, p
is the density and ﬁi = E_Ei_the acceleration.
at?

Equations (2.1) - (2.3) constitute the system of equations of
linear elasticity. They should be completed by the boundary and initial
conditions, Assume that the surface A bounding the body consists of
two parts, 4 = Au + AU. On Au there are prescribed displacements while

on Ao tractions. Thus, we have the boundary conditions

u.(x,t) = @, (x,t), x€A4, t>0,
v v “ (2.4)
Uji(f’t)njtf) = pi(f’t)‘ X € Au' t >0,
where ﬂi and ﬁi are known functions,
The initial conditions have the form
u£(§.0) = fk(f}' #:(x,0) = gi(g). x €V, t=0. (2.5)

They express the fact that at the initial instant ¢ = 0 the distribution
of the displacement field fk(f) and its velocity g£(§) are prescribed.

The principle of virtual work and Hamilton's principle are of a
fundamental importance in deriving the differential equations for the
vibrations of strings, beams, membranes, plates and shells.
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The principle of virtual work has the form

-pu = |o, 8¢ .dV. (2.6
J(Xe pui)éuidv + I pbu 44 Jotgﬁeza V. )
A

g
Here Gui is the virtual increment of the displacement, Baij the virtual

increment of strain. We assume that the above increments are arbitrary

2 g
and sufficiently smooth (of class C( )) and that they satisfy the
kinematic conditions on the surface 4. We require that

the virtual increments Bui vanish on the surface Au and are arbitrary
on Acr'

The principle of virtual work states that the sum of the virtual
work performed by the body forces, inertia forces and surface forces in
arbitrary virtual displacements is equal to the virtual work of the

internal forces.

Introducing the concept of the work of strain

W Jw dv = ,}[ £jsw.du{ (ueﬁeia. + —ekk CEBLVA (2.7)
14

we write Equation (2.6) in the form

J(Xi-puf)ﬁuidV + J pbudA = a'ﬂ/;. (2.8)
44
The integrand in the expression for the work of strain is a positive

definite quadratic form. The necessary and sufficient condition that
the integrand in (2.7) be of such a form is the following:

3X + 2u > 0, u > 0. (2.9)

Observe that for a static problem all causes and resulting displacements

depend on position, i.e. on x. Equation (2.8) takes the form
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JXT:GuidV + J p;6u dA = G‘W;. (2.9')
4 AU
On the basis of the principle of virtual work we can (by varying
the state of displacement) derive a very general minimum principle for

a non-stationary displacement field.

Let us consider an elastic body continuously changing its state
between the instants ¢ = t; and ¢ = t;. Let us compare the true
displacements taking place in the body with the displacements uii-dui,
the variations 6“1: being chosen such that they vanish at the instants
t =% and © = ty:

Gui(x,tl) = 0, ﬁui(x,tz) = 0. (2.10)
If we integrate equation (2.9) over t from t; to t;, we obtain
t2 ta t2
J 6 Wdt = I §Ldt - pI dt[ii.ﬁu.dV (2.11)
e J T 1
t) t ty V

where

66 = induidv + J pié‘uidd.
v Ao
The variation of the kinetic energy is given by the formula

N TN [
Jp&iéuﬂdlf = Jp—a—( 1:‘Sl.g':)cllr' Ipuiéuidv

SK

since

K

L

vV
Integrating 6K from ¢, to t,, and bearing in mind the assumption (2.10)
we obtain
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t, to
J sX.dt = '-p[ dt[ﬁiéuidv. (2.12)
1 t; V
Substituting from (2.12) into (2.11), we have
ty t;
Gj ("hf:- K)dt =J 8L dt. (2.13)
) t
If the external forces are conservative they possess a potential and in
this case
t2
6] (14;-](- L)dt =0 (2.14)
t)

Denoting by = = TV;-.C the total potential energy of the system we
present the Hamilton principle in the final form
ty
GJ (r=XK)dt = 0 (2.15)
t)
It states therefore that the integral (2.15) takes an extremum value.

= Transverse vibrations of simple one- and two-dimensional systems.

In this Section, on the basis of the principle of virtual work
and the Hamilton principle we shall derive the differential equations
for vibrations of a string and a membrane and the equation describing
the vibrations of a beam and a plate. We shall emphasize here the
evident analogies in the derivations.

(a) Consider a string in tension along the z;-axis between the points
A and B, The constant tension in the string is denoted by S and its
length by 7. Assume that in the zz-plane a load q(x,t) acts per unit
length of the string. This loading produces a deflection of the string

w(xz,t) in the xz-plane. We have assumed here that in the cross-section
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of the string there occurs a homogeneous state of stress o - g-and
£

that the deflection of the string is independent of y.

qlx,t)
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Fig. 3.1

In deriving the differential equation for the deflection of the
string we should remember that the derived equation is approximate, in

view of the simplifying assumptions made above.

To derive the differential equation for the deflection of the
string we have made use of the principle of virtual work (2.8) of Section
2. Neglecting the influence of the weight of the string (Xi = 0) on
its deflection, we write Equation (2.8) of Section 2 in the form

- J pubwAdzr + J qéwdx = 61&2, A= deda. (3.1)
0 0
The quantity Iv; is obtained on the basis of the following considerations.
Under the influence of the external loading the length dx of a linear

element of the string undergoes an extension. The work of deformation
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is the following:
T
"‘r‘fe = SJ (dg=-dx) = S(1'-1). (3.2)
0
We have denoted by ds the length of the element dx after the deformation.
Summing the above deformations we obtain the quantity "W; = 5(1'-1).
The absence of the coefficient } in the right-hand side of Equation
(3.2) is due to the fact that at the instant of application of the
loading the tension S already had its final value. Strictly speaking
we should write (3.2) in the form W; = (54dS)(1'~1) where dS is the
increment of tension S due to the loading q. However, this increment

is very small as compared with S. Taking into account that

1
2
ug:sj ([ + (-g';-")]i‘— 1}dz, (3.3)
0
: w213 .
and expanding the expression |1 + (7&-) in series we arrive at the
formula
¢ 2
=5 ow
T‘VE = 'EJ (3;) dx (3.4)

0
Since (—)2 «< 1 we have retained only the first two terms in the expansion
of the funct:.on [l + (--) )i. Performing the variation of the work of
deformation

_of fw 3w, _ [aw _of 3%
5'\(\@ = Sj'ﬁgsz—dz— S[—asﬁh?]u SJ mﬁwdm,
0
we represent Equation (3.1) in the form
: Z
J (22 _ pﬁl?"—" + @)éwdz = SFB-&!] - (3.5)
a2 ox 0

If the string is clamped at its ends x = 0 and x = 1 we have

w(0,¢) = 0, w(l,t) = 0. (3.6)
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In deriving the principle of virtual work we assumed that when the
displacements are prescribed, then 6u, = 0. In our case we have
prescribed displacements (3.6) at the ends of string and therefore at
these points we have &w(0,t) = 0, 6w(l,t) = 0. Consequently, the right
hadn side of Equation (3.5) is zero. In view of the arbitrariness of
the virtual displacement &w, the left-hand side of the homogeneous
equation leads to the differential equation

oz-a-f-w- = _3'22 + = qlxz,t) = 0, (3.7)

wz  t?2 o
0O<xz<l, t>0,

where we have introduced the notation
e? = S/pA. o = pA.

The differential equation for the transverse vibrations of the string
(3.7) should be completed by the boundary conditions and the initial

conditions
w(x,0) = f(z), w(x,0) =g(x), O<xz<1l, t=0. (3.8)

(b) Consider now transverse vibrations of a membrane, By a membrane
we understand a plate whose thickness is very small compared with its
other linear dimensions. A membrane offers no resistance to bending.

It constitutes the two-dimensional counterpart of a string.

Consider a membrane in a homogeneous tension S in the plane z)x;,
with contour ¢.  Assume that normal to the plane x,x; there acts the
loading q(z),x2,t). Under the influence of the tension S and the load-
ing q there arises in the membrane a two-dimensional state of stress
(described by the normal stresses o)] = 07 homogeneously distributed
over the thickness of the membrane); the membrane then undergoes a

deflection in the direction of the x3-axis, denoted here by w(zj,x3,t).

Let us derive the equation of deflection of the membrane, on the
basis of the principle of virtual work, by varying the displacement
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Equation (2.8):
-”hm'.iaum + ”q&odA = 6W.. (3.9)

We have neglected here the influence of the weight of the membrane

(X; = 0) on its deflection. Under the influence of the external load-
ing an arbitrary surface element Ay of the membrane undergoes a deflection,
Separating this element and subjecting it to the tension S we find that

its surface increases by the value of the integral jISdunds, where ds is
an element of arc of the contour ¢g and du, is the displacement in the
direction normal to the curve ¢py. The increment in the surface is

shaded in Figure 3.2. Taking into account that for every surface

element the work of deformation is the product of the tension S and the

increment of the surface, we have for the whole membrane

W= S(A'-4), (3.10)

Fig. 3.2
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where A' is the area of the surface of the deformed membrane. Thus,

Equation (3.10) constitutes a complete counterpart of Equation (3.2).

In the expression for the work of deformation (3.10) S is the
initial tension. It changes insignificantly due to the action of the
external loading q(x),x;,t); this increment is very small indeed as
compared with the initial tension and can be neglected in the expression
(3.10).

It is known from differential geometry that the change in area of
the surface is given by the formula

A'-A = H{[l + (%)2 + (%)2]% - 1}dzdz,. (3.11)

Expanding the integrand of (3.11) in series and confining ourselves

to small deflections we obtain

.5 W w =
1"[2 = 3 JI[(E)Z + ('5"3"-2‘)2]@, d4 = dxldxz. (3;12)

Let us now determine the variation of the work of deformation. We have

§W = S”w fw dd, o =1,2. (3.13)
€ st

s O

The integral appearing in the right-hand side of the expression (3.13)

can be transformed as follows:
§W, = S”[(w’aﬁw)’u - m'uudw]dzl (3.14)

Making use of the Green transformation in the plane we reduce (3.14) to

the form

ow

= —5 - 3.15

6'&1{: S Ian wdg S”w.mﬁwdﬂ. ( )
e A
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where %% denotes the derivative of the deflection along the normal to

the boundary e. Introducing (3.15) into (3.9) we arrive at the equation

”(a.:’m-ohliw)am - J-g%swda =0, (3.16)
e
where o = ph is the mass per unit surface of the membrane. If on the
boundary ¢ the displacement w(s) is prescribed, then & = 0 on ¢. There
remains in (3.16) the first integral only. In view of the assumed
arbitrariness of the displacement fw within the membrane (3.16) leads to
the differential equation

SV - 033% +q=0, x €4, t>0, x= (21,23), (3.17")
at
or
o2V~ = -q/a, o2 = 5g. (3.17")

This is the differential equation for transverse vibrations of a membrane.

It should be completed by the boundary condition
w(a,t) =0, s8ee, t>0, (3.18)
and the initial conditions

w(x,0) = f(x), w(x,0) = g(x), x €4, t =0, (3.19)

(e) The differential equation of the transverse vibrations of a rod.

We proceed to derive the differential equation governing the
transverse vibrations of a rod, on the basis of Hamilton's principle.
We calculate the work of deformation ”hé, the kinetic energy F and the
variation of work of the external forces 64, i.e. the quantities which

enter into the variational expression (2,13).

The work of deformation has the form
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"P\g =3 Jcmemdv. (3.20)
¥
We neglect in the expression for "Jn.é' the influence of the transverse
forces; it is very small for beams used in civil engineering structures,
the longitudinal dimensions of which are considerably greater than the
transverse ones. Taking into account that

- L)
e E‘e:m. B = a—;z—z. (3.21)

where w is the deflection of the rod, and integrating over the length
and cross-section of the rod, we obtain

A z
W, = .25: J (ﬁﬁu“s?dydz, = %I- J (12-"’-)2@. (3.22)
£ 32 1 2

I is the moment of inertia of the cross-section., (Cf. Fig. 3.3).

Fig. 3.3
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The kinetic energy of the translational motion has the form

)
K= ;pj(a‘;)zdv z ;aJ (W)2%dx, o = pA. (3.23)
v 0
Denoting by g the loading per unit length of the rod, we have
1
8L = j qtwdzx., (3.2y4)

0
Hamilton's principle has the form
t [’ t A

2 N 2
5J dt[ dz[%{(%) - ;c(a})z] = J dtj qéwdx. (3.25)
ty 0 B t; 0
Let us calculate the variations
1
GI g2y, - 2J % 2wy,
s ax? L ax? ax?

Taking into account the identity

2, 2 y 3

8% 326w _ aw5w=_a~_(azu 38w _ g

ox? ax?  axY 3 9x? ax  ax?
we obtain

1 5 A
Y 3
GJ (22 % 4y = 2J 39 iz + 2[3-23—3-53 . iﬂw]i (3.26)
y o 3 axh x? ax Az’

Examine the second integral in Equation (3.25)., Integrating by parts
with respect to t and taking into account that for t = £} and t = ¢, we
have éw = 0, then, in accordance with the assumptions made in deriving

the Hamilton's principle, we obtain

ty 1 ty L
gaj dt[ (w)2dg = - o[ dt[ wéwda, (3.27)
t t)

Introducing the above results in (3.25) we arrive at the relation
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to A 2 ty
2 3
J J il 20 -q)ﬁwdx-!-EIJ dt[ﬁﬁ 3 syl =0, (3.28)
= axt  at2 2 ox axd

The second term vanishes as a result of the boundary conditions. If
the rod is simply supported at the cross section = 0,I we have
]
w=0, M= ~E§—ﬁ£ =0 and also &w = 0,
axpl
If the end is fixed, then

w =0, -g-xl‘-’--Oandalsodw 0,-?-‘;%

Finally, if the rod is free at the end, we have the conditions

= 0,

3
M = -5132—“’-_ 0, T=-ERY=o,
dx? aa
Taking into account the above boundary conditions, we have from (3.28)
ty, 1 g
JdtJ (22 ¢ aﬁ -q) budz =
™
t; O

Since this relation has to be satisfied for every value of &w and

t(ty<t<t,), we obtain the differential equation of transverse vibration

of a rod
A
R, A oo, (3.20')
ozt at2
or 4
o2d¥ 4 5 = Q/ s e? = EE, o = pA. (3.29M")
dat o

Equation (3.29') is associated with the two initial conditions

w(z,0) = f(z), w(x,0) = g(z), 0<xz<1l, ¢t=0. (3.30)
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(d) The differential equation of the transverse vibrations of a
thin plate.

Considering the deformation of a thin plate, i.e. assuming its
thickness to be small in comparison with other dimensions, we make the

following simplifying assumptions:

a) points lying on a normal to the middle surface remain on the normal
to the middle surface after deformation;
b) during the deformation no strains are induced on the middle surface;
e) the influence of the shearing stresses 03;,032 on the deformation
of the plate is neglected.

The displacements uB(B =1,2) are proportional to the angle

ug = T g (3.31)
The strains are then

€8 i;(um’B + uB’a}=-x3w,aa (3.32)
Using the formulae for plane stress

— v -

OUB = QG(EQB + i_—véuaikk)‘ Ekk = E1] t+ E22, (3.33)

we obtain
26z,
02~ [(l'“)w,ua + Udﬁﬁw,kk]' (3.34)

We introduce now the resultants of the stresses acting in the plate:

the bending moments are given by

M&B s J ouB.rgdxg, a,B = 1,2, (3.35)

Performing the integration, we have

Mg = -N[(l-v)w’aa + Gusw,kk]' (3.36)
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where
Eh3
12(1-v2)
is the flexural rigidity of the plate.

N =

Let us calculate the strain energy of the plate. Neglecting

the shearing stresses o0;3, 023 and the normal stress o33 we obtain the

expression
W=} JouaequV, a,8 = 1,2, (3.37")
v
l.€s
l "
W = EE-J[(l+v}ou80uﬁ-vakka"n]dV; (3.37")
4

where the integration is performed over the entire volume of the plate.
Replacing the stresses by the displacement w (Equation (3.34%)) and
performing the integration with respect to x3(dV = dAdzr3), we obtain

- N 21
W= 7 J[[(l—v)w.asw.aﬂw(w'm) Jaa. (3.38)

The differential equation of the transverse vibrations of the plate can

be derived from Hamilton's principle

ty ty
a[ (W-XK)dt = J 8L dt. (3.39)
t1 t)

The strain energy is expressed by Equation (3,38), the kinetic energy by

the formula

¥ = ic”(a})?dd, g = ph, (3.40)
A

and the variation of the work done by external forces has the form
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L= JJqéwdA. (3.41)
Here q denotes the load acting on the plate.
Let us perform the variation of &W:
SW = SW'+SW" = Njfvzwvzcaw}dA
A
2
+ N(l-—v}”[ B0 _g@% .y S50 =2- 2w, 3% 2“’} . (3.42)
g 3 3xp X)X ax? axf  xl az?

Now, applying the two-dimensional Green's identity we obtain

st = N”Vzwvz(ﬁwjdﬁ. = N{”V"mﬂwdﬂ + J(vzu—‘;g = "’)da} (3.43)
A e
The symbol 7 denotes
g = -?.:_ + }a—q_—..—_ + 2.1.'_....
y 202 4
axl 3.'::13::2 sz
The integral §W" can be written in the form
aq 9q2 J 8 9
N = o X " e = - = 1
W = =N(1 U)JI(QI] + sz)d'q N(1-v)|[(q)cos?? +q2sin?? )ds, (3.44)
A c
(3.u45)

where
adw 92w dsw a%w _ddw 3k dtw %
q) S = = — ) = ——— e ———
dx, dx)dx, ae Bmzagxz 3z, Az, dx,
= 2 appearing in Equations (9.45)

i, * Az,

n

o, 3l
Let us transform the quantities

adw _ 9dw 3éw . 3dw _ 9w . 36w
-----COS‘L?’ _5'55 7},3—51———-3;5 mﬁ‘ +Tscos?9,

3z, . an

(3.46)

Inserting now (3,45), (3.46) and (3.44) we obtain
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K 2
Sw" = -N(l-v)Jﬂ éz—wcoszz} + ﬁsinzzﬂ - E-—b"—-cosz)‘sinz?st

2 2
v an|dxs a:l 9y dxp (3.47)

[ 52 2
-1‘&'(1-\:)Jﬁ (-El—2 - &)cos hsind+ -aw—(sinzﬁ' -cos?$ )]da.

dgL Bx‘} a2 dx) dxp

e 2

The second integral in Equation (3.47) can be integrated by parts to give

N(l-u)J-"‘-g%’f(xl ,Zp)da = N(l-v){[f(:cl,a:z)ﬁwl . J&%{aa} . (3.48)
e e
Since &w vanishes on the boundary of the plate only the second term of

the right side of Equation (3.48) remains.

The variation of the kinetic energy has the form

ta ta
5J Kdt = -oJ dtHﬁ&adA. (3.49)
t t; A

LY ¥

L/

Fig. 3.4
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Thus, all the expressions occurring in Equation (3.39) are now known.

Hamilton's principle thus takes the form

ty
[ dt { ” [(W9*w+aii-q| Gwda (3.50)
ty, A

2 2 2
+ NJ [Vzw-(l-v}(-a—blsinzzf‘ + g——y—coszﬂ —%-a—wsinz? cos?? )]Eb—?ds
4 B:c? ox? 3wy 3y an

) NI [392;.; (1) (B 33 e B 2 (5102 -cos?H) ]éwds =0.
n s axf a;r:i 3, 9y
We shall now prove that the integral over C the boundary of the plate
vanishes for homogeneous boundary conditions. Consider the curvilinear
contour of the plate C. The resultant of the stress, the bending moment
M and the torsion Mns can be expressed in terms of the moments M),

nn
Myp, My, as follows:

Mnn My cos?24 + Mppsin?d? + Mypsin2d ,

M 3(Mpp=My1)sin2d + Mypcos2ih. (3.51)

Let us now introduce an invariant obtained by contraction of the

relations (3,36)
My1+Mpp = =(L14v)NV20, (3.52)

The transverse force is given by the formulae

_ 372w _ V2w
@ = -N T Q2 = -N Tz, (3.53)

The transverse force on the boundary C has the form

Q, = Qeos? + Qosinth = -W %z-w-.

In view of (3.51), (3.52), (3.54) we represent Equation (3,50) in the form
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ty
J dtJ[(mv“w+oﬁ—anwdA = J[M%n(w)égg-— V. ()é) ds. (3.55)
5 A

M (w)
where Vﬁ(w} = Qn(w) + :: . The curvilinear integral on the right

hand side of Equation (3.55) vanishes, since all the boundary conditions
are satisfied. If the boundary is simply supported over its contour C,

then ME = 0, w = 0 and therefore 8w = 0.. If the boundary is clamped,

n
thenw = 0O, %E-: 0 on € and hence 6w = 0 and Eg% = 0, Finally, in the

case of a boundary free from tractions: Mhn(w} = 0 and Vh(w) = 0,
The quantity Vh(w) is the sum of the transverse forces acting on the

boundary (the so-called Kelvin-Tait boundary condition).

Equation (3.55) takes the form

ty
J dtJI(NV“w+aﬁ-q)6wdA = 0, (3.56)
t; A

In view of the arbitrariness of the virtual displacement &w the bracket
in the integrand should vanish and this equation holds for every instant

't where t|<t<t;.

Thus, the differential equation for the transverse vibrations of a

plate takes the form

e29% + w %g(xl.xz,t), (x),2,) € 4, t > O, (3.57)
where
e? = N/g, o = ph,
The differential equation (3.57) should be completed by the initial
conditions
w(xy 4@ ,0) = flaz),%2), w(x) ,22,0) = glay422), x €4, t = 0. (3.58)
Knowing the deflection surface w, we can determine the bending and

torsional moments from the formulae (3.36).
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4, General solution of differential equations of transverse
vibrations.

In the preceding section, on the basis of the principle of virtual

work and Hamilton's principle we derived the following differential

equations:

(:225i -0 = - %q(x,t), e? = Slgs 0= A4p, (4.1)
£

cz‘?zm = I.J = = %‘Q(a’?l ﬂz,t)) 02 = s/o! o= ph! (4'2)
b =

L . %q{:c.t), 02 = EI/g, 0 = Ap, (4.3)
"

-o2¥%) - 1 = - %q(xl,xz.tJ, e? = N/yy o= ph. (4.4)

They describe the transverse vibrations of strings, membranes, beams and
plates, respectively. Only Equations (4.1) and (4,2) are hyperbolic.
These equations are to be completed by the boundary and initial

conditions.

Let us write Equation (4.1) = (4.4) in unified notation

Bw) - v = - ?l,q(:g.t) xed, t > O. (4.5)

This equation is completed by the boundary conditions appropriate for
each of the system, and the following initial conditions:

w(x,0) = fx), w(x,0) = g(x), x €4, t = 0, (4.6)
Equation (4,5) and conditions (4.6) concern two-dimensional problems.

However, in the case when the deflection is independent of the variable

x; the above equation becomes one-dimensional.

We introduced before the Green's function G(x,x',t) satisfying the

differential equation

HG) - G = - 25(x-x"6(8), x4, t >0, (4.7)
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with the same boundary conditions as for the function w of Equation

(4.5) and with homogeneous initial conditions
G(x,x"',0) = 0, G(x,x',0) =0, x €4, t=0, (4.8)

The Green's function can be regarded as the deflection due to the
action of an instantaneous concentrated external loading with intensity
equal to unity.

Taking the Laplace transform of both sides of Equations (4.5) and
(4.7) we obtain the equations

H@) - (p2w - pf - g) = - %E(v_&.p). (4.9)
D@ - p?G = - Z(x-x"). (4.10)

We have made use here of the initial conditions (4.6) and (4.8) and we
have introduced the notations

w(x,p) = jw(it.t)e-ptdt. G(x,x",p) = I G(x,x! ,)e Prat,
0 0
Let us multiply Equation (4.9) by G and Equation (4.10) by b,
subtract the results and integrate over the region A of the two-dimensional

system, Then we obtain

”[‘c‘b(a)—a‘ H(G)|dd = - %”Etg.mﬁ(g.g',p)wg)
A A

- ”(pf(:_g)w'(:_:))ﬁ(g.:_c' WP)AA(x) + %”5(55-35'}5(:_&.1?)@(:5)-
A A

Making use of the well-known theorem on the Dirac function
(Cye————

we arrive at the following formula for the transform of the deflection:
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w(x',p) = Ha(gz.pﬁ(gg.gg' WD )dA(x)
A

+ a”[g(ghpflp]ﬁ(g.g_{' .p)dA(pw”Lﬁmay-a.;stm]mup. (4.11)
A A

We shall prove below that the last surface integral transformed into a
curvilinear integral over the contour of the two-dimensional system,

vanishes in view of the homogeneous boundary conditions. Thus, after
inverting the Laplace transform and replacing x by x' we arrive at the

integral expression

n

w(§,t) J drIJq{f',t-r}G(f',f,f)dA(§')

0 A

+

oJJ[g{f')+f1§'}3%30(§',§,t)dﬁ(§'). (4,12)
A

For a one-dimensional problem we obtain from (4.12) the formula
t 1
I dtj qla',t=-1)G(z' x,1)da’
0o 0
l
- cJ [g(z")+f(z") a—i]G(.r',x,t}dx'. (4.13)
0

w(x't)

In the above integral expressions the functions q, f, g are known. The
knowledge of the function G(wx,z',t) makes it possible to determine by a
simple integration over the variables x and t, the deflection of the

considered system.

Let us now prove that the expression
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1
Iy =J (Gl yze' \p) B (x,p) )0 (x,p) D (Gl yx' p))]dx (4.14)
0

in case of the one-dimensional problem, and the expression
Ip = ”[ﬁtm',pa:ﬁtﬁts.pn-ﬁcg.p)m(ﬁcs.gf.pn]wm. (4.15)

vanish for the assumed homogeneous boundary conditions. Thus, in the

5 : : 9
case of transverse vibrations of a string #HWw) = e2=—.

oz
Integrating by parts we obtain
A
—d25 _ —d%C 4 =da|’
I = cZJ (—= - v—)dzx = 02[6'——- - w—j - (4.16)
da? da? de  dxd0

If the string is clamped at the cross-sections z = 0, I, then® = 0O,

G = 0. Hence I; = 0. For transverse vibrations of a beam

DPw) = g2,

" Consequently, the integral expression (4,14) yields
dx

after integration

Z
e WE G -
I = =% J (B2 - B Gy = 2 [Gw“' -G'w"fG"w‘-G"'w] , (4.17)
dz" dztt 0

0
The expression in parenthesis vanishes for all types of the boundary
conditions. If the beam is simply supported, then
G=0,G"=0; if it is clamped, thenw = 0, w' = 0
Finally for a free end of the beam we have w" =0, w=0,G"=0,
G = o,
Let us now proceed to transverse vibrations of a membrane. Here

DH(w) = ¢2v%w and therefore

I, = aZH(EvZE-EvZE)dA : czj(ﬁgl—?‘: - B3yds = 0 (4.18)

A ¢
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in view of the Green transformation on the plane. The integral (4.18)
vanishes in the case of a membrane supported on its boundary, for then
B = 06 20

Consider finally the transverse vibrations of a plate. In this
case $H(w) = =-e20%w and hence

Ip & cz”(z?v"ﬁ - Gv4w)da. (4.19)

Transforming the above surface integral into a curvilinear integral over

the boundary e¢ of the plate we arrive at the expression

g ok =G _ o (=vE . ——
I, = - H”m‘”)a‘n‘ v (0)G-M_ Gy + Vn(G)w}ds (4.20)
c

We have made use here of the transformations utilized in the derivation
of the differential equation for the plate deflection and the formulae
(3.51) and (3.54).

If the plate is simply supported on its boundary, then w = 0,
Mm(a) =0and G = 0, Mnn(E) = 0, If it is clamped, we have w = O,

w = _ o 3G _
—ﬁ-OandG—O, 2 &

Mm(w) = 0, Vn(u} = 0 and Mnn(a} = 0, Vn(G) = 05

0. Fipally, if the boundary is free of tractions

Thus, in all cases of homogeneous boundary conditions the integrals
Iy, I, vanish. The deflection of the system is determined from Equation
(4,12) or (4.13). Consequently, we have reduced the solution of
differential equations for elastic systems to the determination of the

Green function.

L The Green function for the transverse vibration of a string
of finite extent,
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Consider the differential equation of the Green function G(z,z',t)

2 2
(GZLZ - _a.;)g(m,;l.g} = - %5(;.:—:*)5(1;) (5.1)
a2 ot

with the boundary conditions

G(0,z',t) = 0, G(L,x',t) = O, (5.2)
and homogeneous initial conditions
G(x,x',0) = 0, G(x,x',0) = O. (5:3)

Applying the Laplace transform to the Equation (5.1), we obtain

2 e
(czd—'z- - Pz)G(m;Z-"gP) = %6(33".‘5'). (5'4)
dx

Now perform over (5.4) the finite sine transform:

oo

Glz,z'yp) = %ZG"(u.m' ,p)sinun:c (5.5)
n=1
1

G*(n,x',p) = J T}'(:c,a:'.p)sinunmdac. a8 E} (5.6)
0

Multiplying both sides of Equation (5.4) by sinanm and integrating from

0 to L, we obtain

1 [/
2 -
J (S = pz)G(:c,x',p)sinunxda: = - %I §(z=z')sina xdx (5.7)
de?
0 0

oy
= =sS1lna X" .
o n

Integrating by parts gives

z
J LC,ina wz = o, [(-1)" T2,z IGO0 1p)] -8, 264 (n,z" p). (5.8)
dx?

0
The quantity in square brackets on the right side of relations (5.8)
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vanishes since the boundary conditions are homogeneous.

Introducing the notations (5.5) we obtain

(czun2+p2 )G*(n,xt,p) = %simn:.:'. (5.9)

Let us now invert the finite sine transform

= sina_x'sina_x
- 2
Glzyx'sp) = 7o L L (5.10)

24024 2
p*tcta

n=1

and subsequently the Laplace transform. Taking into account that

-1
& > c 2) =-l—sinunct.
2
a, “ec+p ac
we are led to the solution in the series form

oa = simn:c'sina x
[ = i = .
Glx,x',t) 5T/ T —sinwt, 0 = o c. (5.11)
n=1

Consider the differential equation of the deflection of the string

2 2
(6222 - 2lyi(x,t) = - Lq(x,2) (5.12)
aw? 3t o

with appropriate boundary conditions, and initial conditions
L]
w(0,t) = w(l,t) = 0, w(xz,0) = flz), w(x,0) = g(x). (5.13)

The solution of the Equation (5.12) has the form

t 1 1

wlx,t) = {d-r[q(x',1)G(x'.a:,t—t)d.::‘mj[g(a:')+f(x'%]6(z',:c,t)d:c'. (5.14)
0 0 0

Consider the case of the forced vibrations (q#0, f=0, g=0):

ot

wlxz,t) = JdTJq(x'.t-'r)G(:r.",x,‘t)da:'. (5.15)
0 0

Suppose that at £ there acts a concentrated force which varies in time,
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viz.
q(x,t) = F(t)é(x-£), O<z, £ < L, (5.16)

Introducing (5.16) into (5.15), we obtain
t
wlz,t) = ! F(1)G(& ,x,t-1)dT, (5.17)
0
If F(t) = H(t), where H(t) is the Heaviside function, i.e.

0 for t < 0O,

H(t) =
1 for t >0,

we obtain for the particular case
sino Esina x
w(x,t) = —fz——'—'—(l-cosw t). (5.18)

Locate now at £ an external periodic concentrated force
q(x,t) = 8(x-E)cosut, w3} w . (5.19)
Introducing (5.19) into (5.17) we obtain the following formula

sxnu :cszl.nu £

2
w(x,t) = 2%— ——-—-—-——-(coswt-cOSu:. t). (5.20)
n=1 i # ~u?

As w + Wes this relation takes the indeterminate form -g—. Applying
the L'Hospital rule, we obtain

2 - sina zsina £
et
w(x,t) =z~ ————-—-smw te (5.21)

w
n=1
Formula (4,21) yields a steady increase of the deflection in time. It
is valid only for small values of ¢, and hence for small deflections of
the spring from equilibrium. This restriction is necessary, since the
differential equation of deflection of string was derived under the

assumption of small deflections as compared with the length of the string.
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Consider one more particular case of loading of the string.
Suppose that a force

H(t)6(x=Vt) for O < VE < 1
qlz,t) = { (5.22)

0 for vt > i

is moving along the string with a constant velocity V, from z = 0 to
xz = 1. Introducing (5.22) into formula (5.15), we finally obtain

%e = sinaux

w(zr,t) = = ) ———(a Vsinw_t-w_sino_Vt). (5.23)
St-a (a 202y 2) T A '
n=ln n n

This formula is valid for O < Vt < 7. It yields the deflection at x due
to the action of a concentrated force moving along the string with
constant velocity V. It is readily observed that as V + 0, Vi + £ we

pass from the dynamic to the static problem.
From (5.23) we obtain

- sinunasinunx
w(a’) = —_- - (5.24)

2
Szn=l a,

In the following we assume that ¢ = 0, g = 0 and f * 0. From the
equation (5.14) and (5.11) we have

@ A

wlx,t) = %—Zsinun:ccosmntj f{a:')sinun:c'dx‘. (5.25)

n=1 0
Suppose that there acts on the string a concentrated force P at a point
E. At time t = 0 we suddenly remove this static loading and the string
begins free vibrations. The deflection of the string is given, for
t > 0, by formula (5.25), in which we have to set

” sina msinunﬁ

flz) = wylx) = Zy——n _»n (5.26)

2
Szn:l a,

Introducing (5.26) into (5.25) we obtain
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op - sina_x
w(x,t) = = -——-—s:l.nu Ecosw t, w = a_e. (5.27)
AL ok o

n

6. The Green's function for the transverse vibrations of a membrane
of finite extent.

Consider the Green's function G(x,x',t) satisfying the differential
equation

(@202-028)G(x,x" 18) = = S8(x-x")8(8), o? = 5, ozph, x5 (z) 22 )(6.1)
with homogeneous initial and boundary conditions.

First let us discuss the problem of vibrations of a rectangular
plate.
Applying the Laplace transform to the Equation (6.1) we obtain

(6292-p2 )G(x%,x',p) = = %ﬁ(}__:-gs'). (6.2)

Now perform over (6.2) the finite sine transform., Introducing the

notacions

ayaz
G*(u,m,a: .:c'-,p) = [ J G(xy 4xp 32! a:';p)sinanxlsinﬂmmzdxldxz, (6.3)
0

1772
0
G(:cl,zz,:c .a: p) = alazz ZG*(n.m- A sp)sina xysinf @3,  (6.4)
n=1l m=1
mn
. = ﬂ' = —
n a m  ap

we obtain the following form of Equation (6.2)
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1
[c?(a, 248  2)4p2]GR(nymsz) x)ip) = Ssina zising @),

Inverting the finite sine transform in (6.5) gives

= " - — s:.nu x| sinf "”2'
G(x,x',p) = Z Z —sina x)sing ;. (6.6)

2ipn Qa2 n
a1a0, 77 m1C (u 8, )+p?

Inverting the Laplace transform in (6.6) gives finally
L]

~ sina " smB 3:2
Z Z sina z;sing xpsin(y, ct)  (6.7)

Yom

G(x,x",t)

31828 27 ‘mm1

Yom

(o 248 2%,

Consider the case of forced vibrations. From the Equation (4.12) we

have
T

w(x,t) = J er[q(g',T)G(g',§,t-1)dA(§'). (6.8)

0 A

Suppose that a force

F(t)6(z\-Vt)8(xy-ny) for O < V& < 1,

qlx,t) = (6.9)
0 for vVt ¥ 1

is moving along the membrane with a constant velocity V, from a) = 0 to
xy = a; (along the line 3 = np). Introducing (6.9) to Equation (6.8)
we obtain
t
w(x,t) = JF(T)G(VT,nz;xl,:ﬂz;t"r)d'[. (6.10)
0

If F(t) = H(t), after integration with respect to t we have

4P e = sina xlsms xgs:Lannz
w(x,t) = ( i o i
(x,t) Z Z unl/smymct cYmsmuth)

2
alazsm 1 m=1 nm n ¢ Ynm) (6.11)
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Consider the problem of free and forced vibrations of a circular
membrane.  Assume that the forced and free vibrations depend only on
the variable r. We have to do with the axisymmetric problem of
vibrations. The solution of the differential equation

(@92-32 o(e,t) = - Jg,e), 12 = 2 12 4o @2ad)d, (6.12)
ar? r ar
has the form
a t a
wlr,t) = J@'Iq(r'.t)G(r‘ W E-T )dT+UJ[g(r')+f(I")-a-at-_‘lG(r',r,t}dr'- (6.13)
0 0 0

If the Green's function G(r,r',t) is determined, the deflection w(r,t)
can be found from Equation (6.13).

The differential equation of the Green's function can be written
in the cylindrical coordinates

2
[az(a a8 - —IG(r,r‘.t) - Ls(r-r1)8(2). (6.14)
a2  p ar at? o

We assume that the boundary condition and the initial conditions are
homogeneous. Let us perform over the differential equation (6.14) the

Laplace transform, whence

2 e
[cz{d—— +—L - pz]G(r.r',p) = - L5(r-r1). (6.15)
dr? » dr o
We can solve the Equation (6.15) with use of the finite Hankel transform
a
G*(n,r',p) = J G(r,r' ,p)rJG(anr)dr, (6.16)
0
- a(“ r)
G(r,r',p) = —ZG*(n,r' o (6.17)

(71 (o a)]?
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The parameter o, should satisfy the transcendental equation
Ju{una) 20y M= 132500.,% (6.18)

Multiply Equation (6.15) throughout by rJg (unr) and integrate with
respect to r from O to a.

2 i
J [cz(d—- + 24 02 (G (a r)dr = - iJ 8(r-r')rdg(a r)dr.  (6.19)
3 dr?2 pr dr * 9

Perform the integration by parts

a
b a
J (-—- + ---—)GJﬂ(u r)dr = [rd—Jg(a r)-aanJO(unrJ]
¢ dr?  radr ar 7 0
a
- uan r"alfo(an:-)dr. (6.20)
0

The expression in brackets vanishes for the upper limit, provided
Jola a) = 0; for r = 0 it vanishes always.

Taking into account Equation (6.20) we find that

cztmﬂ2 + p?)G*(n,r',p) = %r'Jg(unr' 5 (6.21)

Performing the inverse Hankel transformation on (6.17), we obtain

r'Jola r' )JO(a r)
G(r,r',p) = —-——Z . (6.22)
(a, 2e?4p? )7y (a a)]

Applying the inverse Laplace transformation, we arrive finally at the
result
2 ““r‘Ju(unr‘)Jg(unr) .
G(r,r',t) = — sinw t, w_ = o_c. (6.23)
a2°n=l ac [J1 (ana)]z % L %*

In the particular case of a concentrated load q(r,t) = —i-;é(r)ﬁ(t)
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we obtain

Po - Jo(t‘ln!"}
w(r,t) = Z {l—cosmnt). (6.24)
o

na?st=ta 2[Jy (o a)]?

7. Free vibrations of an infinite string and an infinite membrane.

Consider the homogeneous differential equation of the transverse
vibrations of the string (4.1). Assume that the string is infinitely

long, and that its motion is determined by the initial conditioms

L]

w(z,0) = flx), w(x,0) = glx), (7.1)

which mean that at the time ¢ = O the string has deflection f(x) and
velocity g(x).

The solution of the equation

2 A S (7.2)
ax?
has the form
w(z,t) = OI {g(z" )+f (! )g_t] G(Ix' Wyt )da', (7.3)

Thus, we have to solve the equation

2 Z
(.«.-2-3-2- : —"’—;)Gcz,z',ﬂ = - L5(a-2')6(8), -w<zce, 120, (7.4)
ax ot

with the homogeneous initial conditions and boundary conditions in

infinity: G + 0 for lz| + =.
Performing the Laplace transform over Equation (7.4) for the above

homogeneous initial conditions, we obtain

(cz-dz—z - p2)G(x,x',p) = - %G(z-a:'). (7.5)
dr
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Further, perform over Equation (7.5) the exponential Fourier transform.

Multiplying both sides of Equation (7.5) by -;-J-'—QT'E;': and integrating from
2n
~» to +®=, we obtain
-] [-]
2 — . -
-—J*-J (czd— - p? )G(a:.-'c',p)eﬁz =-d —l—J 8(z-x' }ei’gx . (7.6)
vor!  dzx? o Vor!

Integrating the first term of (7.6) by parts gives

JEe':E”dm. (7.7)

-

J L6t = (A8 - £EE)| - g2

The quantity in square brackets on the right side of the relation (7.7)

vanishes, since at infinity both the deflection G and its derivative

gg vanish. Introducing the notations

E(E,a:' sP) = LJ Gz, ,p)eigmdx. (7.8)
/21r__w

Glzyz',p) = LJ £,z ,pe **%ak, (7.9)
Yo

we transform Equation (7.7) to the form

(c2624p2)F = —2—o™5=' (7.10)
av2n

Introducing the Fourier transform for the expression p-(-f, we obtain

pGlx,z'\p) = —— Bl TS (7.11)

2110J c?£24p?

Let us now invert the Laplace transform. Taking into account that
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&_1{—2—-—*) = costet,

p2+e2e2
we obtain
-g% = z—i'—ajwcoﬁct eﬂ:E = }dE. (7.12)
Moreover, in view of the relations
cosEet = 3(e 60ty TECE) Jme":”‘sda = 216(n)
we obtain the final for the solution (?.;:)
?Tii = -]2'—G[ﬁ(x—x'—ct)+6(::-x'+ct)] ‘ (7.13)

Assume now, that w(x,0) = g(x) = 0. Introducing (7.13) into the integral
expression (7.3) we have [93]
%J fz') [6(x-z"-ct)+6(z-z"+ot)]dx'

3 [fz-ct)+f(z+et)] . (7.14)

w(x,t)

This is the d'Alembert solution of the wave equation of the string.
The Equation (7.14) can be interpreted in the following way. Let us
deflect the string to the form of the curve f(x) at instant £ = 0, and
remove the forces which produced the initial deflection, without inducing
an initial velocity of the element of the string (i.e. g = 0). For
t > 0 the deflected form of the string is divided into twe waves (the
waves 3f(z~ct) and if(a:w?)). One wave moves to the right with the

constant velocity ¢ = (-'g)!, while the second moves to the left (Fig. 7.1).

Let us discuss the problem of free vibrations of an infinite
membrane. The equation of the transverse vibration of the membrane has

the form



386 W. Nowacki

fix)

eV = 0, x€d, t>o0. (7.15)
Furthermore, we assume the following form for the initial conditions:-
w(x,0) = f(x), w(x,0) = g(x), x = (z1,@2) € 4, t = 0. (7.18)

The solution of the differential Equation (7.15) takes the form

w(x,t) = oJ J [g(:f')+f(:f')%~g]6(§,§',t)dA(:5‘). (7:17)

The differential equation

2
(292 - L )G(x,x' ,b) = - Z6(x-x')6(¢). (7.18)
2 T g =
at
is to be solved with the homogeneous initial conditions. We first of

all place the Dirac function at the origin of the coordinate system.

In this case the equation of transverse vibrations of the membrane

can be written in cylindrical coordinates
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2¢2.52 P .16 .5
(e Vr at)G(P.O,t) = = EF;—G(t). (7.19)
where
2
V%:a +-]—'--a-,c2-5/a.
ar? p oor
Applying the Laplace transform to Equation (7.19) we have
2922 \F - _18()
(c vi" p )G(rjogp) - o 21”,‘ (7-20)
Denote by G(a,0,p) the Hankel transform of the function G(r,0,p):
G(a,0,p) = I G(r,0,p)rd o(ar)dr, (7.21)
0
and by E(r,o,p) the inverse Hankel transform
E(r,o’p) = J (}(u,o,p)mfg(ar)du. (7.22)
0
Here we observe that
(7.23)

2 _ -
j r(g—-— 2 -d—)G(r',O.pJJg(UP)dI' = - a%G(a,0,p).

ﬂdz'2 r dr

Multiplying Equation (7.20) by rJo(ar), and integrating with
respect to r over the interval (0,®), we transform Equation (7.20) to

the form

= 1
(c?a?4p?)G(a,0,p) = T

Applying the inverse Hankel transform (7.22), we have
1 wcﬂg(ur)du
G(r,0,p) = —-—I——-—-——-

210 5 p2+ale?

(7.24)

(7.25)

Applying the inverse Laplace transform we arrive finally at the

relation
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G(r,0,t) = ]2‘““[ Jglar)sinactda (7.26)
0
or
=1
(e2¢2-p2) 2 for 0 < r < et
1
G(r,0,t) = (7.27)
2rd0 0 for ot < p < @
where ¢ (3:% + ;cg);.

Now, we remove the concentrated and instantaneous impulse to the point
%

We obtain

1
2mnoe

G(x,x',¢t) (7.28)

21
(e?42-p2) Z for 0 < » < ot
0 for et < r» < =

where, now,

.
r [(xlwx;) + (mz—mi)zjﬁ

is the distance between the points x and x'.

8. The Green's function G(z,x',t) for the transverse vibrations
of a rod.

Consider a rod of finite length ¢ which undergoes forced and free
vibrations. Assume that at time t = O the deflection and velocity of

the rod are known, i.e. that
w(z,0) = flz), wlx,0) = g(x). (8.1)

Thus we have to solve the differential equation

4 -
P %q(x,t), o? = %%. o= pA, (8.2)

3t
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with the initial conditions (8.1) and homogeneous boundary conditions at
the ends of the rod. The solution of the Equation (8.2) has the form

t 7
wlx,t) = J er qlz' yt-1)6(x' yx,1 )dx'
0 0
1
+ UI [g{x')-rf(x'}-:-; G(x' ,x,t)dx'. (8.3)

The starting point of our considerations is to solve the

differential equation of the Green function

Y 82 1
(e = + —)G(x,x"',t) = =5(x-x")6(t). (8.4)
axt  at? o

The Green function must satisfy the Equation (8.4) with the homogeneous

initial conditions
G(x,x",0) = 0, é(:c,m',O) =0, (8.5)
and the same boundary conditions as the function w(ax,%).
Now consider the differential equation

Y 2
W - w); A = (8.6)
dct c?
the differential equation of harmonic free transverse vibrations.  Apply
now to (B8.6) the Laplace transform. The transformed equation (8.6)

takes the form

p3W(0) + p2W'(0) + pW"(0) + W™ (0), (8.7)

W(p) = J W(x)e Paz.
0
Now inverting the Laplace transform in Equation (8.7) and taking into

(p*-\")H(p)

account the relations
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1 1ok 1 (8.8)

L-l( Iy (51nhAx-51nkm) - LV(J\:::},
pl"").“ a3 o e

L—l( Py = X (coshxx-cos)\.r) . l_quJ’
pl-l_xh 22 9 22

- 2 i i
el l( s A (smhl:cﬁ-s:l.nx:r) = -"-“T(Jur),
phaat 2 A
LHE) = L (cosmazecosiz) = S()
bk = " cos tcosiz = x),
p-

We arrive at the following form of the solution of Equation (B.7):
1 L ok
W(x) = W(0)S(Az)+ TV'{O)TU\:G)'P -i-EW"(O)U(Aa:)-l- TT”“' (0)V(xzx). (8.9)

The solution (8.7) has a number of advantages. The constants

W(0), W'(0), W'(0), W™ (0) appearing in it can be interpreted as the
deflection, the angle of inclination of the tangent of the deformed reod,
a quantity proportional to the bending moment and a quantity proportional
to the shear force, all in the cross-section x; = 0. For arbitrary

boundary conditions, two of these quantities vanish.

Differentiating the function W(x) in formula (8.9), we obtain

W' () = WOV )+h! (0)SOz )+ S#(0)T (M) + %m (0)W(Az),

A A
W(z) = HONWOZ)+H' (OAVOZ)+H'(0)SOz)+ T#" (0)T(hz),  (8.10)
Wt (x) = H(O)A3T(A:|:)+W'(0)XZU( YW (OAV (A )+WM (0)S(Ax).

Making use of the solution (8.9) and the relations (8.10), we can, in a
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very simple way, determine the frequencies of vibrations and their
corresponding modes.

Suppose that the rod is clamped at the cross-section x = O and
simply supported at & = Z. The boundary conditions therefore are the
following:

wW(o) = 0, W'(0) =0, W(L) =0, W(L) = 0. (8.11)

In view of (8.9) and the second relation (8.10), and taking into account

the boundary conditions (8.11), we are led to the system of two equations

I OW(AL) + g (0)V(AL) = 0,
W(0)S(AL) + T (0IT(AL) = O.

Equating to zero the determinant of this system, we have
tanhg - tang = 0, B = AL. (8.12)

This is a transcendental equation having an infinite number of roots.

The first five are the following:

By = 3,927, By = 7,069, By = 10,210, B, = 13,352, Bs = 16,483
m
5:« = I‘—{Luwl), r> 5,
Since
2 EI
%:A“, B = AL, 02=—a-. o = pA.

the consecutive frequencies of vibration have the form

BnZc _ Bn? |
w =__?1. :-—?—1- 'Eg'. n:lp2s"'!w‘
n 12 12N °

The mode of free vibration H;(Il), corresponding to the frequency w, is
given by the formula (8.9).

Since W(0) = W'(0) = 0, we have
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1 s
h;(z) = TE H‘(O)U(Anx) + TE W"(OJV(Anx). (8.14)

We now prove that the modes of free vibration possess the important
property of orthogonality. Denote by Wy s Wy the frequencies and by
Wk(:c). Wl(:c) the corresponding modes of vibration. Suppose that both
vibrations satisfy the same boundary conditions. The functions Wk(:c),

Wz(a:} satisfy the equations

a“w d%w.

—K_ By =0, —=-AY W, =0 (8.15)
az4 k k dzt 11
From these equations we obtain
- d“i-ik d*w, : ¢
= N T =
J (Wzdx“ We—)dz = (A AZ)I Wy W dz
dx
0 0
or
A
[lelt_w 'H "+H qulI l_y rl|W]z = (kll = A‘-l) Wde
L'k L% "L kL Tk k i k1
0
The expression in square brackets vanishes for both limits:
L
by b =
“k )\Z)J Wszdx 0. (8.16)
0
Since Ak # M (wk # wl), which has been assumed in view of two
different forms of vibration, Equation (8.16) is satisfied only if
[
j Wk(m)wz(x)dz =0 k¢l (8.17)
0

This is the condition of orthogonality of the modes of free vibration of
a rod, Consider the integral
/A
J [, ()] %dz = v (8.18)
0

Bearing in mind that the mode of vibration contains a constant C,
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we choose the latter in such a way that integral (8.18) equals unity.

In the case of the vibration of a rod simply supported at both
ends, we have
A
2 $2 = - }SIT-—
CJ sinm ak:cdx Y ak 7
0

2
whence g-;i =Y If, therefore, we set C = /-%-. we obtain y = 1.

The functions

Kk

'Ta

are called the normalised functions of free vibrations of a rod simply

2 }
Wk(a:) = /-i-sa.mk.::, oy =

supported at both ends.

In subsequent considerations we assume that the eigenfunctions
Wk(x) satisfy the condition
JZ {o iF kAL
W, ()W, (x)dz = 6§, = (8.19)
0 k l ki lif k=1.

Consider now the differential equation (8.4).

Apply the Laplace transform to Equation (8.4), whence

b o
(e28— 4 p2)G(z,x',p) = L5z-2"). (8.20)
dz! o

Let us now expand the function G into an infinite series of the

eigenfunctions Wn(:c), which satisfy the equation

aw
—-Hﬁ - A:Wn =0 (8.21)
da

with the same boundary conditions as the function G and w. We introduce

the notation
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T
G*(”ax';P) = J E(Iyx‘gp}yn{x)dma {3'22}
0
Glayz',p) = ZG*(n,x',p)Wn{x). (8.23)
n=1
This is a new finite transform. We have
1 o l
J Gz, ,p)Hm(:c)dz =ZG*(n,a:' ,p)J Wm{m}Wn(m)dx
0 n=1 0

-
=ZG*(n,x',p}6m = G¥(mux',p).
n=1

We have used the condition of orthogonality for the functions Wn(:r).

Now we multiply Equation

A
4 -
J (e2d— 4 p2)TW dx
dac" "
0
Since
Z —
iy
J Gy o
dct "
0
we have

(e? l";+p2)6*(n,x' \p)

We now apply the inverse

(8.20) by hk(m) and integrate from 0 to L.
1

- lj 8(z-z" W (x)dz. (8.24)
o n
0
¢ dw 1
= 'G"-—idm[w " -W 'E"w"c’--w"?;“]
A n n n’ mod0
0
7 (8.25)
z A:'J Ewndx = J\:G*(n,x‘,p),
0
= iy (2") (8.26)
0 n - L]

transform (8.23) to obtain Equation (8.26)
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L]

= W (z" )V (x)
Glx,z',p) = iz 2 1 (8.27)
o' ptec?at
n

n=1l
Inverting the Laplace transform, we obtain

A UAE
Gz, ,t) = = ) ————sinu t, o = cli. (8.28)

n=1 i
Let us examine forced vibrations: q # 0, f = 0, g = 0. The Equation
(8.3) takes the form
1 t
I d::'J q(z' ,t-1)6(x" yx,7)dT (8.29)
0

0

w(x,t)

[ t

I d:r:'J qlz',1)6(z’ @ ,t-1)dT.

0 0

Suppose that along the rod there moves a concentrated force of intensity

F(t) with the constant velocity V, i.e.

F(t)8(x=Vt) for 0 < VEt < 1,
q(z,t) = (8.30)
0 for vt > 1.

We have assumed that gq(x,t) varies in time during the motion along the
rod. Introducing (8.30) into Equation (8.29) and taking into account

that
i
'— ' ' =
I §(z Vt)Wn(x )dx Wn(Vt),
0
we obtain for the delfection of the rod the formula
1 = ¢ sinwn(t-—'r]cl'r.
U(I,t) = —an(a“:)J F(T)Wn(TV)—r_—— (8.31)
a n
n=1 0

If F(t) = PgH(t), we have
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Pg W (x)t
wlx,t) = Z : I Wn(V"t)sinmn(t—-r)d"c (8.32)

T o4 "
n=1 0

In the particular case of a rod simply supported at both ends, we obtain
from (8.32)
o 3
2P s:.nanx
w(z,t) = — ) ————(a_Vsinw_t-w_sina VE). (8.33)
lo w_ (a2y2-y2) - n
n=ln n n
This formula is valid for O < Vt < 1. Formula (8.33) is valid also for
the case of a static concentrated force. It suffices to take V + 0,
and to assume that, in spite of the infinitely small velocity, the force
reaches point £ i.e. we set V+ 0, Vt + E, sinath -+ sinGnE in (8.33).
Hence
2Py < sina &
wat(x) i) —u—nq--smanx. (8.34)
n=1
Knowing the deflection of the rod w(x,t), we can calculate the bending
moment M(xz,t) and the shear force T(x,t) by the formula

3
M= -ERR, D,y = -ER, (8.35)

32 33

9. The Green's function G(x,x',t) for the transverse vibration of
a thin plate.

Let us investigate the problem: what frequencies w and what
vibrational modes lead to harmonic free vibration of a rectangular plate

supported along the edges. Assume that

t

W(2],20,t) = Wzysap)e’” (9.1)



Elastic and Viscoelastic Systems 397

and insert the function (9.1) into homogeneous equation governing the
bending of the plate. This equation then takes the form

VW - A% = 0, A% = LU R A (9.2)
e? ph
Assume, also, that W(xj),r,) = X(x;)¥(x,), which corresponds with certain
types of boundary condition of a rectangular plate. In such a case
Equation (9.2) takes the form

X ) Y2y 142X () )Y (22 )4X ()Y Uy )-A¥X () ) () = 0. (9.3)

The functions X(x;), ¥(x,) can be separated in the above equation for
instance, provided that either

X"(2y) = —02X(xy)s X (2y) = -a2X"(2y), (9.4)
or

Y"(mz) = _323(31)’ _Y"v(;gz) = _uzyl'(:cz). (9.5)
The conditions (9.4) and (9.5) are fulfilled only by trigonometric
functions

sina_xq sinB x,

or J/ where LRI Z. Bm = E'
cosan;cl cosﬁm:cg

We assume that the plate is simply supported on the edges x; = 0, aj.
This implies
.Ym(xz) = Csinﬁmxz, m = LD sraigmy (9.6)
since this function satisfies the conditions
Y (0) = ¥ (a3) = 0, ¥(0) = (az) = 0 (9.7)
for any integer m, and hence also the boundary conditions
w(zy ,0,t) = w(x),az,t) = VA(x),0,t) = V2u(x),a;,t) = O.

In the case under consideration, Equation (9.3) takes the form
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4 2

42X L gpe S plogie w0, (9.8)
dart o2 m

Apply the Laplace transform to Equation (9.8). We have

(P2'253n)[pX(0)+X'(0)] +pX"(0)4X" (0)

X(p) = (9.9")
(PP-82)2 - A"
i.e.
X(p) = 2A— - L _)[pxn(0) + X' (0)) (9.9")
22 p2-62  p24el
2 2
+ 2= + S )(px(0) + x'(0))
222 p2...62 pZ,’,SZ
where 5 _ 12 _ g2 I e,
€< = A Bm, § A+ Bm.
Observing that
L_l(P—-—-) = coshézy, L_l(P———) = coser),
p2-42 p2ee?
Era— & Zsinhézr;, L bl ) = El-sinexl,
p2-§2 & p24el
we find that Equation (9.9"), by means of the inverse Laplace transform,
yields
X(xy) = X(0)A(x) )+X'(0)B(z) )+X"(0)C (xxy J+X"" (O)D(xy ), (9.10)

where the following notations have been introduced:-

Alzy) = —-%[azcoshsxlﬁzcosarl), h
2\

el e? ., 52 .
B(z)) = ——(=sinhér, + —siner,),

202§ € > (9.11)
1
C(xy) = ——(coshéx) - cosex)),
232
11 sinex;
D(x;) = ——(=sinhéx; - ). =

262 § €
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Observe that

X(zy) = X(0)A(x)+X"(0)B(x) )+X" (0)C(xy )+X""' (0)D(z),
X' (xy) = X(O)GézD(J:l V4K ' (0)A (e )4X"(0)C " (2 )+X"' (0)C(ay ),
M(xy) = X(0)5%20(31)+X'(O)G%2D£31)+X"(0)C“(x1)+X"‘(OJC'($1). (912
X7 () = X(0)622C" () )+X" (0)622C () J+X"(0)C™ (1 )+X™ (0)C"(zy ),
where
C'(xy) = B(x1)+2B;D(ml), c"(xy) = A(r;)+25;0(m1),
O (zy) = 2D () )+262 [Blz )+262D (1)) -

Consider a plate with the clamped edges x; = 0, @). In this case we

have

X(0) = X'(0) = X(ay) = X'(ay) = 0, (9.13)
and the solution (9.12) has the form

X(xy) = X"(0)C(xy) + X™ (0)D(xy). (9.14)

Here the two first conditions of the set (9.13) have been used. The

remaining conditions lead to the system of equations

x(ay) = x"(0)(ay) + X" (0)D(ay) = O

X'(ay) = X"(0)C'(ay) + X" (0)C(ay) = O.
This system does not lead to a contradiction if its determinant is equal
to zero, i.e. if

c'(ay(ay) - €%(a;) = 0.

Thus we are led to the relation

8ay €a) bay £a)
(étanha——— +etan2——)(6coth2— -ecotQ—) = (9.15)
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The equation

Say €Q)
6tank~§— + Etan—E- =0 (9.16)

corresponds to the symmetric modes of vibration of the plate, and the

equation
5.‘11 EQ)
écotank—a— - ecotan—— = 0 (9.17)

to the antisymmetric modes of vibration.

For a given value of Bm the consecutive value of Anm can be
calculated by means of Equations (9.16) and (9.17); furthermore the

consecutive frequencies of vibration are given by the formula

W ""‘;m (9.18)

The mode of the eigenvibrations is given by Equation (9.12)), i.e.

Clay)
X(xy) = X"(0)|C () = —D(x1)]- (9.19)
D(a;)

In the particular case of a plate simply supported along the edges

x, = 0, a; we obtain

nm _
sine _a; = 0, B = ET, = 1,2,000 5%
Since
e = [a2 - g2
n nm m
we have
A2 = a2 4 B2, o = %,
mm n m n a

This leads to the result

o = gy = (0 +32>J— (9.20)

The mode of the eigenvibrations has the form

]

nnay

X(.‘.Cl) = ASin_ET' (9-21)
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Consider two different modes of free vibrations of the plate
(satisfying the same boundary conditions), namely W%J(xl,xz} and
Wkl(mlvfz) with the corresponding eigenvalues Aij and A,.

These satisfy the differential equations

VW =A% W, = b, ~AY =

2f "13 id Oy ¥ Wkl AkZWkI Bs (3.22)

From these equations we have
4 4
”(szv Wij =W, jv Wip A = ()\ 5 Akz)”W Wy 1dA (9.23)
A A

But the left side of Equation (9.23) is equal to zero (see (4.2)!), we
have

(A.. kZ)[J "wkIdA = 0. (9.24)
A

Since xij F kkz’ Equation (9.24) is satisfied only if

Hw..ﬁsz =0, (T#k,g#1l. (9.25)
A

The eigenfunctions of the free vibrations of plates are orthogonal;

their coefficients are chosen to satisfy the condition

”k]%.jdﬂ =i (9.26)
A

In the following considerations it will be assumed that the eigen-
functions satisfy both conditions (9.25) and (9.26).

Observe that the orthogonality property holds also for modes of
vibration which cannot be written in the form of a product

W‘L‘{f = X£(z1 )Yj(mz)-

Consider a plate which undergoes forced and free vibrations.
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Assume that at time t = O the deflection and the velocity of the plate

are known, i.e. that
w(x,0) = filx), w(x,0) =g(x), x = (z),r2). (9.27)
The solution of the differential equation
e2v'y + w = %q(g,t)

takes the form

t
w(x,t) = Jdr[jq(f',t-T)G(g',§,t)dﬂ(§'} (9.28)
0 A
+ 0”[9*(5'3 + f(§')§-£]G(§'.§,t)dA{§').

Now, we must solve the differential equation for the Green's

function G(x,x',t):

(€27% + 32)6(x,x" 58) = Z6(x-x")8(2), (9.29)

with the same boundary conditions as the deflection w(x,t) and with

homogeneous initial conditions.

Applying the Laplace transform to Equation (9.29) we obtain

(e27*4p?)G(x,x ' 4p) = -‘}ra(g—g'). (9.30)

Let us now expand the function G into a series of the eigenfunctions
h%j(ﬁ)' which satisfy the Equation (9.2) with the same boundary
conditions as the functions w and G. We introduce the notation of

finite transform

142

G*(k,l;x;,:é;p} = (xl,mgiz',z';p}ﬂkz(xl,zz)dxldxz, (9.31)

o—-R

Glxy ,x, 3T HTL5p) = G (s L3y 5} 3P )Wy o (&1 52) (9.32)
k=1 1=1
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Multiplying Equation (9.30) by szta:l »T2) and integrating over the
whole region of the plate, we obtain

(pzmzliz)G*(k,l;m{ 23 3p) = -i-'P!kz(zl' <)) (9.33)

Making use of the inverse transform (9.32) and inverting the
Laplace transform, we obtain the following expression for the Green's

function of the rectangular plate:-

1 kv sinwkzt
Gxox'st) = ‘JZ Z"’m"-‘”’kz‘l")“ﬁk}_’ Wy = g (9.34)
k=1 1=1
Consider a particular case of forced aperiodic vibrations. Introducing
(9.34) into Equation (9.28) and assuming g = f = 0, we have

@ ® aas t
w(x,8) = %Z "’kz"f’J [ Wkl(:f'JdA(gg')J q(g_&‘,r)atsinwkz(t-t)dt.
k=1 1=1 00 0 (9.35)

Suppose that the force q(x,t) moves with the constant velocity V along
the line x3 = ny, and hence that
F(t)8(xy=Vt)6(xp-nz) for 0 < Vit < q)
qlzy,29,t) =
0 for Vt > a,.

Inserting q(x,t) into Equation (9.35) and taking into account the relation

a)az

[ [ sta-rorstaynatby g} mpamiaz; = g veun)
00
we arrive at the formula
o L] t
M
w(x,t) = %Z Zwkz(;g)l F('r)sz(lf‘r,nzmsmmkz(t-t)d‘f- (9.36)
k=1 l=1 0

If F(t) = PgH(t), where H(t) is the Heaviside-step function, then
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Py ©
£
w(x,t) = = Zﬁfk J 2(l)"c ,ﬁz)a,—;-;s:l.rmkz(t—‘r )dr. (9.37)
k=1 1=1

In the case of a plate simply supported along the whole boundary a
particularly simple expression for the deflection of the plate is

obtained. Since

Nkl(gJ = 7——-5:11’!1 xlsinﬁl:cg
ayaz

m 2. = g2 24\
*n al’ By = ay’ “k1 (uk * BZ}E’
we obtain after carrying out the integration indicated in Equation

(9.37)

4Py sina 1 sinB xzsmﬂznz
wix,t) = o, Vsinw, ;t=w, ;sina Vt] (9.38)
ph oaja 2 % kL™ Tkl
T wer OV k)

l=1
0 <Vt <a.
If V> 0, and sinukb’t + sinuknl Equation (9.38) gives the statical
deflection of the plate produced by the force Pp located at the point
(f'n ,1’12)

Z sina)z)sina, n sinB,zsinB;n2 (9.39)
M(i"’t) ayas N Zb (0’. 1‘62 )2 ’
k=1 1=1

Having found the deflection surface, we can calculate the stresses

occurring in the plate with the aid of Equations (3.34).

10.  Transverse vibrations of rods and plates resting on an
elastic foundation

The differential equation of the transverse vibrations of a rod
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resting on an elastic foundation has the form

3w
o?2—
Azt

|
a
-

a 1

t = Xgr), o? . (10.1)
Assuming a linear relation between the resistance ¥ of the foundation
and the deflection (Winkler's foundation), we have

r(x,t) = kwlx,t) (10.2)
where k is the foundation modulus. Thus Equation (10.1) takes the form

T
22V 4 3+ k2w = }q(x,t), k2 = ®yg, (10.3)
ax o

Equation (10.3) is only an approximation to real conditions. It is
valid only for small deflections. The assumption on r(x,t) states that
the resistance r(x,t) produces a deflection only in the section x while
in fact w(x,t) depends on the resistance at all points of the rod. We
assume also that during the deformation the rod is in contact with the
foundation over the whole length. It is therefore clear that Equation

(10.3) only approximately describes the phenomenon of vibration.

Consider now an infinite rod resting in an elastic foundation,
which at time ¢ = 0 is subject to the instantaneous loading
q(x,t) = Pos(x)6(¢t).

To Equation (10.3) we first apply the Laplace transform with
respect to time and then the Fourier cosine transform. Inverting the

Fourier cosine transform, we have

_ Py “cosazda
nEIO attpupt
pdE”k k+p?o :
= (cospz+sinux), p = ( )
8udEr uEI

The inversion of the Laplace transform involves serious
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difficulties. In the particular case w(0,t) we obtain
Por(3)
w(0,t) = @ &0 b, (10.5)
3
2/5 (WETY (2k) /2
where Ja_(z) is the Bessel function of first kind of order . For the

static case, we have

B
w(z) = ——e ¥ (cosnz+sinnz), n = (E%f)&, x > 0, (10.6)
8EIn3

The differential equation of the transverse vibrations of a plate
resting on an elastic foundation has the form
2 _k

/U. (10.7)

eV unircy = %q(x,t), e? = %3 o = ph, x
Consider the infinite plate resting on an elastic foundation,

subject to the static loading. The load q(r) = fgfifl
2mr

is applied to the

infinite plate. The problem of determining the deflection of the plate
is an axisymmetric one.
Py 6(r) 32 19 1

o 2m ar2 p or

Multiplying Equation (10.8) by rJdg(ar) and integrating with respect to
r in the interval <0,»>, we transform Equation (10.8) to the form
- Py - y
(c2a*+n* (o) = T w(a) = I w(r)rd o(or )dr., (10.9)
0

4pplying the inverse Hankel transform, we have

wir) =

Py [orJo(an)du
2

» (10.10)
a4’ o2

2noc 0
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or

Po
w(e) = - gkeio[p?],  » = @2 e, (10.11)

There keip(z) is the modified Kelvin function. Assuming Pp = 1 and
moving the concentrated force to the point x', we obtain
1

Glx,x") = - mkeiu[r(-;j—)&], v = (o2 +zy-2))?) . (10.12)

Consider a plate-strip resting on an elastic foundation, simply
supported at the edges ) = 0, a; and subjected to the action of a
concentrated force q(x,t) = Ppé(x)-z])é(x3).

We have to solve the equation

Py

k
Viwsptn = -A;-G(:c]-:ci )6 (xsp), p4 = e = - (10.13)
oe

= =

Using the finite sine transform and the integral cosine transform, we

obtain
2P - P cosfrodf nw
wix) = Zsim x!sina_x J ; O T m— (10.14)
o n 1 nl 2, 0232, b n
wNay = o (@, “+8%)%+u ay
The solution of the infinite integral has the form
®  cosBxr,dB ~Yy®2 " On%2
J N s Tt ’ (10.15)
2 2 2 2 i 2
0 (8 Y )(8 +6‘n } 2 an Tn Yn Gn
where
P e s 2 ey Zhi Blns 2iE <TETD,
Yn By THUSS an R 2UTH Gn Tn .

We must take the real part of the integral (10.15). In the particular

case k = 0, we have to do with the integral
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wcossxzdﬁ n -

J = 3{l+un:cz)e ne, xp > O. (10.16)
2,5292

4 (an +84) ha

The deflection w(x) takes the form

) i(l#‘anﬂ?z) oz, .
Y N ; ; 5. :
w(x) 2 un3—-e n %sina x)sina ), @3 > (10.17)
n=1

From (10.17) we obtain the Green's function

1

w b _l | : ladi —p!
G(’f”f') = Qalﬂzun(lmn{x-‘, :-:z}Je 2 smunzlsz.nuna:l, xg :cz>0.

c n=1 (10.18)

-a_(x,=x
LS.

Applying the operator V2 to the function G(x,x'), we have

1 - exp [-an(:cz-a:al]

aV o
1 n

VZG(E,{:')

n
=
—
L3
-
x
~—
1
I

: . v
sina z)sina x| (10.19)

or

cosh?:-(a:z-xé )-cos-&(a:l—a:i )
L ; (10.20)

ya

1]

d(x,x")
m LN ‘.IT 1
cosh(z3-x; ) -cos(x) +2 )

Differentiating the function ¢(x,x'), we obtain

- ¥

2
2L = g - (zpmayPE,
a:cf 3,
2
I (10.21)
a2 dap
026 . (g2
Naxlaxz = () "’2)ax1'
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Now we can determine the bending and twisting moment in the closed form

L __ Lty L l-v. 3

M (G) = N(G’“-l-uG’zz) = - S5y + Sle,mw) oy
- oAty _l-v. 443

Mpa(G) = -N(G ,,#G | )) = = 9 - Xz, xz)sg? (10.22)
_ _ _ _1-v 3¢

Mlz(G} - H(l V)G’lz = -—2 3.'.C1-

The form of the shear forces is the following

e L <28

(10.23)

aviG _ _ d
Q,(G) = -NE = %

11.  Free vibrations of an infinite rod and of an infinite plate.

Consider the integral expression (4.13) for the special case:
q=0,9=0.

w(z,t) = u] fla RHE T, (11.1)

-0
We have to solve the differential equation for the Green's function

4 2
(aza—; + L-Z-)G(:c,a‘:',t] = %G(z—x')é(t), e? = E_j" o = pA. (11.2)
o9x 9t

-w<p <o, t>0,

Let us perform over the differential equation (11.2) the Laplace

transform and further the Fourier exponential transform.
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Inverting the Fourier transform, we have

pG(x 2’ sp) = L —iE(m—x')dE. (11.3)

2n0 _J:wcz'c;"-l-pz

Now we invert the Laplace transform. Since

L_l __2____) = cosEet
e2et 4p2
we obtain
G = 1 2 '?:E (2’."".7.")
il J cosE‘cte dg (11.4)
-
The following relation will be employed
=] = | et Y2
-—i-J costlcte tE(a-z )dE = a [cca(—x z') + sin Lx_-:c__)__] (11.5)
Vo ! 2/et 4et uet
Introducing (11.5) into the integral expression (11.1), we obtain
e Y2
wlz,t) = = Jf(z')[cc——"‘” 2')? | giplEz!) ]d:c' (11.6)
2/2met ! bet Yot
or
1 12 3:'2
wlxz,t) = Flao-' )lcos—- + sim—/|dx' 1.7
2/2met bet Yet

In the particular case

flx) = fgexp(:%)

ba
i.e. when the initial curve has a prescribed form, we obtain from (11.7)

a2 2
ra os[ ctx

w(x,t) = — exp (<
+e2t2/a® 4(a*+e?t2) [u(a"+c2t2)

- ,l;tan_l(-g-z-] (11.8)
a
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Fig. 11.1

Figure 11.1 represents the graphs of the function w(x,t) for
consecutive values of parameter t. For the sake of comparison the
dotted line represents the propagation of a transverse elastic wave in a
string, for the same values of ¢. In the latter case we have two
"erests" propagated in the opposite directions, for a rod, however, such

a division does not occur.

Let us discuss the problem of free vibrations of an infinite plate
and confine our considerations to axisymmetric modes of vibrations.
Assume that the initial conditions depend on the variable r only, and
are independent of the angle 6. The equation of the transverse
vibration of the plate can be written in cylindrical coordinates,
namely

eV lu(r,t) + w(r,t) = 0. (11.9)

The equation (1l.1) takes for the axisymmetric form of vibration the



412 W. Nowacki

form

w(r,t) = J flr')
0

aG(” a2 t) (11.10)

We have to solve the differential eguation for the Green's function
(292 + 22)G(r,2! ,t) = Z8(r-r')8(5). (11.11)

Let us perform over the differential equation (11.11) the Laplace

transform and further the Hankel transformation. After inverting, we:
obtain
3G _ 1 g Yod 2 (
et r'dg(ar' )ad o(ar)cos(aet )da, 11.12)

0

Introducing (11.12) into the integral expression (11.10) we obtain
w(r,t) = J r'f(r')dr'J ad g(ar' )J g (ar)cos(ea?t )da. (11.13)
0 0

Consider the Weber integral

oo

2
J adg(ar' ) g(ar)e " da = E%exp(— z
0

2 1
SV Io(5),To(2) = Jo(dz).  (11.14)

Inserting v = -Zet into Equation (11.14) and taking the real part
of the integral, we have
J al g (ar' ) o (ar)cos(aet)da =
0

p24p12
20t 0{2ct)5 in(z )

This procedure leads to the following final form of the formula for the

free vibration of the plate
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2 1 0 1
Fig. 11.2
& I cyaria o -
w(r,t) = QCfJ Fr )JD( )s:l.n( oL )dr . (11.15)
0
Let the initial deflection of the plate equal
]
w(r,0) = f(r) = foexp(- —).
2
From the Equation (11.15) we have
0a? 42
w(r,t) = J aexp(- ——)Jp(ar)cos(ca’?t)da. (11.16)
2 4a?
0
This leads to the formula [93]
(11.17)

fo 2 2
w(r,t) = -exp (- e )|cos= 4 psin- ],
1+n2 1+n2 14n? 1+n2
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wher =y 5 PUE P
here n et/ 25 P Ly

The deflection w for several values of the parameter n is shown

in Figure 11.2.

12.  Transverse vibrations of viscoelastic rods and plates.

In formulating the stress-deformation relation of a viscoelastic
body, it is convenient to represent them in a form analogous to that of
the perfectly elastic body. In the latter the Hooke law has the form

Uij H 2u££j + Adijekk’ A (O [ (1z2.1)

The system of Equations (12.1) can take a different form, corres-
ponding to the representation of the deformation as a sum of volume and
shear deformations.  Subtracting from (12.1) the quantity %ﬁijckk’ we

have

1 ) 1

0y 36£jakk = 2uc£j + {Askk Eﬂkk)ﬁij' (12.2)
Contracting in (12.1), we obtain

Opp = (3) + 2u)skk. (12.8)

In view of (12.2) the system of Equations (12.1) - (12.3) can be replaced
by the system of equations

3ij = 2ue£j, (12.4)
8 = 3Ke, (12.5)
where
8.2 0., - %5,.0 B & By b edE 0,. =8, €,, =@, K= X + zu.
27 i 31 kk® 1 ij 3 ig kk'® "kk > Tkk ? 3
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sij is called the stress deviator and eij the deformation deviator.

The stresses 8ij produce a change in shape only, this fact being
expressed by formula (12.4), while the mean normal stresses produce a
change in volume. The equations contain two constants, the shear
modulus p = G and the bulk modulus K. We now proceed to a viscoelastic
body. Assuming that in all round tension (compression) the body behaves
as perfectly elastic, Equation (12.5) remains unaltered. Relations
(12.4) are generalized by adding to the right hand side a term represent-

ing the Newtonian viscosity, i.e. the term Qnéij' Thus

Bij = 2u(l + trat)eij’ 8 = 3Ke, t,

= n/u. (12.7)

Equation (12.7) represents the Kelvin model. The quantity by ® n/u is
called the retardation time.

The relation

8. .
; Y = =

ézj + £, 2ue£j, 8 = 3Ke, t n/ (12.8)

occurs for the viscoleastic Maxwell body.

General stress-deformation relations for linear viscoelastic

bodies can be represented in a form analogous to (12.4) and (12.5), viz.

Py(D)s; (x,t) = Po(D)e, (x48), _ (12.9)
P3(D)B(§,t) = Ph(D)e(’jst)n 3_5 = (-'":1 932933)3 (12.10)
where
N.
P.(D) = Mo, o) 4o, 2= 1,2,3,4
1: = 1: ;] 1: ] P&V ETTY
n=0
n a"
are differential operators and D = —— denotes the n time derivative,
at

(n)

ai are constant coefficients.

Assume that the viscoelastic body is in natural state for ¢ < 0,
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i.e. there are no stresses and deformations, and the loading is applied
at the instant t = Q. Under these assumptions we may apply to Equations
(12.9), (12.10) the one-sided Laplace transform.

sij(f’p) B 2u(p)e£j(§,p) (12.11)
“8(x,p) = 3K(p)e(x,p), (12.12)
where ‘
% Pa(p)  _ 1 Pu(@)
u(p) = s K(p)=-§-—.
2P (p) P3(p)

Observe that Equations (12.1) and (12.2) are of analogous structure to
Equatioﬁ; (12.4) and (12.5) for the perfectly elastic body. However,

in the latter, the quantities p, X appearing in Equations (12.4) and
(12.5) are constants, while in the case of viscoelasticity we are dealing
with functions of the parameter p. Equations (12.11) and (12.12) can

be solved with respect to the stresses. Thus, we obtain the relations

cij{g,p) 2u(p)a£J(§,p} + A(p)ﬁije(§,p), (12.13)
where

- Py (p)Py(p)-Po(p)P3(p)
AMp)

3P (p)P3(p)

We have—aiready indicated the analogy between formulae (12.13) and (12.1).
The analogies may be employed in constructing the stress-deformation

relations for plane states of stress, one dimensional state of stress,

etc,
In the plane state of stress, we have for the elastic body
yp = —E——[(l—v)s B+veé ], e = €11 + €22, 0,8 = 1,2 (12.14)
1-v2 @ o
where
. N(SQ:ﬁu)’ =°2(;+u)' e %M'
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For the plane state of stress in a viscoelastic body

T 3
g [eiju u)+v6£je], @, B=1,2 (12.15)

the quantities E, v being expressed in terms of u(p), X(p) by the

formulae

» K==W+

3 Vs .

—— (12.16)
Aty 2(A+u)

.G 5 _X
-

w‘:!_lf

The above elastic-viscoelastic analogy was announced by Alfrey and Lee.
To solve a dynamic problem of viscoelasticity we can use the corresponding
solutions of the perfectly elastic problem, replacing in the latter A, u

by A, ¥ and inverting the Laplace transform,

Consider now an example of transverse vibrations of rods of visco-
elastic material. The differential equation of the transverse vibration
of a rod of perfectly elastic material (after applying the Laplace trans=~
form) has the form

b g
02d ¥ p&w = ira(:-c,p) + pf(z) + g(x), (12.17)
™ o
where
] s
w(z,p) = J e Phy(z,t)dt, o = “%.
]

For a viscoelastic body, ¢ should be replaced by c(p), the latter being
a function of p, the parameter of the Laplace transform. The transformed
equation of vibrations of a viscoelastic rod has therefore the form

W - -
Ezfp)d—-"f + p% = Llz,p) + pfla) + g(x), Hp) = L£) (12.19)
dx

For the viscoelastic body
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u(p)(3N(pI+2u(p))

E(p) = ——
AMp)+u(p)

Suppose that w, f(x), glx)can be expanded into a series of eigenfunctions
of the rod of perfectly elastic material, with the same conditions of

support as the rod under consideration:

w(z,p) =Zm*(n,p)wn(a:), flz) =Zf(n)!¢n(:c), (12.19)
n=1 n=1
glx) =Zg(n)wn(m}, qla,p) =Zq*(n,p)wn(ac).
n=1 n=1

The functions Wn(x) are orthogonal and normalized, and they satisfy the

equation
d"Wn 5 5 EI
- AW =0, XY=/, e%=—. (12.20)
axh nn n n ey 0 #

Introducing (12.19) into (12.18) we obtain
(@ (pIN4p?hu(n,p) = Zq%(n,p) + pf(n) + g(n). (12.21)

Introducing (12.21) into (12.19), we have

o q*(n,p)+a(pf(n)tg(n))

— 1
w(a,p) = =) — ~— (x), (12,22)
LT "
or
L P ~
w(z,p) = = J q(x' ,p)V (x")dz’ (12.23)
e2(p)\t+p n
n=1 n= 0
el
+ pj flz' )W (a:‘)d:c'+J glx' )W (z')dx'
:lGZ(P““'FPZ n ! n
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We have now to carry out the required integration and then to invert in
(12.23) the Laplace transform. The difficulty of carrying out the

latter operation is due to the complicated form of the function e?(p).

Taking into account that, in accordance with relations (12.12) and
(12.13)

_ Py(p)P,(p)-P,(p)P5(p) _ Py(p)
Ap) = » ulp) = >
3P, (p)P3(p) 2P, (p)
we obtain
3P, (p)P,(p)
a2(p) = BRA oL i ; (12.24)
a o 2P; (p)Py(p)+P2(p)P3(p)
In the particular case of a Kelvin body, we have
Pi(p) = 1, Py(p) = 2G(1+t p), P3(p) = p, P,(p) = 3Kp.
Hence
_ 9G(1+t_p)
e?(p) = I ; (12.25)
g

G
3 + ?(l+t1"p}

Introducing (12.24) into (12.23) and inverting the Laplace transform,

we arrive at the required function w(x,t). A considerable simplification
of the expression ¢2(p) follows if we assume that the material is
incompressible (K + =, v = 3). Then, setting Py(p) + « in formula
(12.24), we have

_ Py(p)  3GI
e¥lp) = 35 ——= —(1xt.p). (12.26)

Introducing (12.26) into (12.23) and inverting the Laplace

transform, we obtain the solution of our problem:
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o z
w(z,t) = E W () J Fla W, (@ )z E—e Prln®sin(u t/1-82 + ¢ ]+
= -p2
n=1 0 1 Bn
A
+ l—me-ﬁnmntsin(wnt,il-si)l g(x' )Wn(x')d.r'J' (12:27)
W, 1-g2 0
™ 1 t
W (x) = = S
+% ~—n-—2-—I Nn(a:')d:c‘J qlxz',t)e B (£ T)sin[wn(t-r}«fl—an]d-r,
n=lmn( l—Bn)u 0
where
ut, o {./1-3’%‘
Bn =i, ¢n = tan B .

n



